

HELIROMA

HELIROMA

hotwatersolutions

contents

CORPORATE

04 HELIROMA

06 QUALITY

PRODUCTS

09 MULTILAYER PRODUCTS

10 Pipe
11 Fittings
27 TECHNICAL INFORMATION
35 HANDLING AND APPLICATION

FOUNDED IN 1996, HELIROMA PLÁSTICOS

S.A. IS LOCATED IN THE

INDUSTRIAL AREA OF

ALBERGARIA-A-VELHA, PORTUGAL.

AT THE BEGINNING OF ITS ACTIVITY, THE COMPANY FOCUSED ON THE PRODUCTION OF HIGH AND LOW DENSITY POLYETHYLENE PIPES FOR THE CONSTRUCTION AND AGRICULTURAL SECTORS.

With the development of the market, increasing competition and the company's strong market position, HELIROMA expanded its range of products, providing the market with more solutions and focusing on a market segment with higher demands for quality and avant-garde technologies; the company also invested in the production of pipe systems for hot/cold water and heating. This change encouraged the increase in highly qualified human resources and the outcome of product quality, making the company a reference in several EU countries, especially in the Iberian Peninsula, for manufacturing PP-R pipes and PP-R fittings

Today, HELIROMA is the leading lberian manufacturer offering the widest range of products and the largest PP-R pipe diameter and fittings (currently $\varnothing 400 \mathrm{~mm}$).

Currently, HELIROMA is one of the few European manufacturers producing PP-R pipes with fiberglass compound (ROMAFASER), also known as the third generation pipe. This characteristic has allowed the company to conquer a very significant portion of the European market and to produce these pipes for many of the world-renowned manufacturers.

Additionally, HELIROMA manufactures crosslinked Polyethylene pipes (PE-Xa) with and without oxygen barriers, and is also one of the few Iberian manufacturers of multilayer pipes (PE-RT - Aluminium - PE-RT).

The quality of HELIROMA's products and services has been certified in several European countries, which have distinguished the company's excellence with their certifications: CERTIF (Portugal), AENoR (Spain), QB (France), DVGW and SKZ (Germany) Bulgarcontro (Bulgaria), among others.

The recognition of the quality of HELIROMA products by these certifying entities has contributed to achieve company success in an increasingly competitive and demanding market such as the plumbing market. This recognition and the excellent performance of the HELIROMA community have greatly contributed to the company's success, which has been translated into continuous growth since 2003.

Every year, HELIROMA participates in the most important trade shows of the sector, both in Europe and in the Middle East, in order to promote and present the company, its products and services to a greater number of professionals. Currently, HELIROMA exports to 30 countries where it is physically present. HELIROMA invests strongly in the areas of quality, staff training, as well in the certification of the company and its products. These objectives have been achieved with integrated quality, health and safety and environmental management systems, assured by AENOR and IQNET certification.

All pipes and fittings manufactured by HELIROMA undergo Inspection Plans and Production Tests, guaranteeing product conformity. In order to enhance the results obtained at the HELIROMA laboratory, tests are carried out in accredited and internationally recognised laboratories.

Today, the company is organising itself to promote its products and services to a challenging new audience - design, supervision and architecture offices, as well.

THE QUALITY IMPROVEMENT OF HELIROMA PRODUCTS DEPENDS FUNDAMENTALLY ON QUALITY CONTROL

hotwatersolutions

HELIROMA S.A. has implemented a Quality Control System, in compliance with ISO 9001, for the purpose of demonstrating its ability to continuously and consistently manufacture a product that simultaneously meets client's needs and their applicable internal and/or legal regulatory requirements.

The systematic approach to HELIROMA'S activities, our process-based organization, as well as the definition of objectives and goals of continuous improvement are some of the relevant outcomes of the application of these procedures.

The manufacturing process can be observed using laboratory analysis and/or on-line collection of the product specification values under manufacture.

FOR LABORATORY ANALYSIS PURPOSES, SAMPLES OF THE DIFFERENT PRODUCTS ARE COLLECTED PERIODICALLY AND MEASURED IN THE LABORATORY.

To measure the specifications of the products, we also use tools that collect, store and process the information and provide the operator with data on the variability of the specifications.

QUALITY CONTROL OF HELIROMA PRODUCTS

 IS CARRIED OUT IN THREE PHASES:$1^{\text {ST }}$ INSPECTION UPON RECEIPT OF RAW MATERIALS AND SUPPLIES
All raw materials received undergo inspection control (Receipt Inspection Control - P.I.E.R.), previously defined and according to regulatory requirements.

All raw materials are properly identified with regards to their compliance status.

2ND PRODUCT INSPECTION (DURING MANUFACTURING PROCESS)

In compliance with the requirements imposed by standards and certifying entities, Heliroma implemented the Manufacturing Inspection Plans - P.I.E.P., which workers are duly informed of, so as to avoid failures during their practical application. Periodically, the dimensions and condition of the pipes and appearance of the fittings are measured and recorded on the computer system to obtain online data for the statistical control of the process.

$3^{\text {RD }}$ LABORATORY INSPECTION

After Manufacturing Inspection approval, all pipe and fitting systems are submitted to a number of specific tests for each product. For this phase, a number of Laboratory Inspection and Test plans (P.I.E.L.) were designed, based on regulatory provisions and other requirements imposed by certifying entities.

All equipment used for the approval of our products must comply with a calibration plan, ensuring the accuracy of the final measuring results.

HR
 HELIROMA

THE BEST SOLUTION FOR

Central Heating, Air Conditioning, Hot and Cold Sanitary Waters and Floor Heating

PRODUCT RANGE
10 Pipe
11 Fittings
TECHNICAL INFORMATION
28 Properties
29 Supply Systems
29 Pipe Characteristics
30 Advantage
31 Marking and Certification
31 Klimapress Fittings
32 Thermal Expansion
33 Bending

35 HANDLING AND APPLICATION

REFERENCE	DIAMETER	COIL	BAR / BAG
	(mm)	(m)	$(\mathrm{un} / \mathrm{m})$
P-PERTAL16	$16 \times 2,0$	100	-
P-PERTAL18	$18 \times 2,0$	100	-
P-PERTAL20	$20 \times 2,0$	100	-
P-PERTAL25	$25 \times 2,5$	50	-
P-PERTAL32	$32 \times 3,0$	50	-
P-PERTAL16B	$16 \times 2,0$	-	$4 / 200$
P-PERTAL18B	$18 \times 2,0$	-	$4 / 160$
P-PERTAL20B	$20 \times 2,0$	-	$4 / 160$
P-PERTAL25B	$25 \times 2,5$	-	$4 / 100$
P-PERTAL32B	$32 \times 3,0$	-	$4 / 80$
P-PERTAL40B	$40 \times 4,0$	-	$5 / 75$
P-PERTAL50B	$50 \times 4,5$	-	$5 / 50$
P-PERTAL63B	$63 \times 6,0$	-	$5 / 25$
PERTAL75B	$75 \times 7,5$	-	$5 / 15$
PERTAL90B	$90 \times 8,5$	-	$5 / 10$
PERTAL110B	$110 \times 10,0$	-	$5 / 5$

SOCKET

CHARACTERISTICS

i AdTIIONAL INFORMATION PAGE 28

REFERENCE	DIAMETER	SMALL BOX	LARGE BOX
	(mm)		(n)
K200016	16×16	45	360
K200018	18×18	30	240
K200020	20×20	30	240
K200025	25×25	20	160
K200032	32×32	10	80
K200040	40×40	1	-
K200050	50×50	1	-
K200063	63×63	1	-
K200075	75×75	1	-
K200075*	75×75	1	-
K200090*	90×90	1	-
K2000110*	110×110		-

[^0]
REDUCER

CHARACTERISTICS

ADITIONAL INFORMATION PAGE 28

REFERENCE	DIAMETER	SMALL BOX	LARGE BOX
	(mm)		(un)
K238018	18×16	37	296
K238020	20×16	37	296
K238021	20×18	30	240
K238025	25×16	20	160
K238027	25×18	20	160
K238026	25×20	20	160
K238032	32×20	12	96
K238033	32×25	12	96
K238042	40×25	1	-
K238043	40×32	1	-
K238053	50×32	1	-
K238054	50×40	1	-
K238064	63×40	1	-
K238065	63×50	75×63	
K238076		1	-

\qquad

FEMALE THREADED ADAPTOR

i AdITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX
	(mm \times in)	(un)	
K234016	16x1/2"	40	320
K234018	18x1/2"	35	280
K234019	18x3/4"	30	240
K234020	20x1/2"	35	280
K234021	20x3/4"	30	240
K234026	25x1/2"	20	160
K234025	25x3/4"	20	160
K234027	25×1 "	12	96
K234033	$32 \times 3 / 4 "$	12	96
K234032	32×1 "	12	96
K234040	40×11/4"	1	-
K234050	50x11/2"	1	-
K234051	50×11/4"	1	-
K234063	63x2"	1	-
K234075	75x21/2"	1	-
K234075*	75x21/2"	1	-
K234090*	90×3 "	1	-
K2340110*	$110 \times 4 "$	1	-

[^1]
MALE THREADED ADAPTOR

CHARACTERISTICS

```
PRESS PROFILE U
```

ADITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX
	(mm \times in)	(un)	
K325016	16x1/2"	50	400
K325018	18×1/2"	40	320
K325019	18x3/4"	35	280
K325020	20x1/2"	40	320
K325021	20x3/4"	35	280
K325026	$25 \times 1 / 2^{\prime \prime}$	20	160
K325025	$25 \times 3 / 4 "$	18	144
K325027	25×1 "	16	128
K325033	$32 \times 3 / 4 "$	10	80
K325032	32×1 "	8	64
K325040	40×11/4"	1	-
K325050	50x11/2"	1	-
K325063	63×2 "	1	-
K325075	75x21/2"	1	-
K325075*	$75 \times 21 / 2^{\prime \prime}$	1	-
K325090*	90x3"	1	-
K3250110*	110×4 "	1	-

[^2]
FEMALE THREADED ADAPTOR WHIT LOOSE NUT

CHARACTERISTICS

- ADITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX
	(mm \times in)	(un)	
K234016-L	$16 \times 1 / 2^{\prime \prime}$	48	384
K234018-L	18x1/2"	40	320
K234020-L	$20 \times 1 / 2^{\prime \prime}$	40	320
K234021-L	20x3/4"	30	240
K234025-L	$25 \times 3 / 4$ "	18	144
K234032-L	32×1 "	14	112

ELBOW 90º

CHARACTERISTICS

ADITIONAL INFORMATION PAGE 28

REFERENCE	DIAMETER	SMALL BOX	LARGE BOX
	(mm)		(un)
K206016	16×16	32	256
K206018	18×18	22	176
K206020	20×20	22	176
K206025	25×25	11	88
K206032	32×32	6	48
K206040	40×40	1	-
K206050	50×50	1	-
K206063	63×63	1	-
K206075	75×75	1	-
K206075*	75×75	1	-
K206090*	90×90	1	-
K2060110*	110×110		-

[^3]
FEMALE THREADED ELBOW

- ADITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX
	(mm \times in)	(un)	
K208016	$16 \times 1 / 2^{\prime \prime}$	30	240
K208017	16x3/4"	18	144
K208018	18×1/2"	22	176
K208019	18x3/4"	20	160
K208020	$20 \times 1 / 2^{\prime \prime}$	22	176
K208021	$20 \times 3 / 4^{\prime \prime}$	20	160
K208025	$25 \times 3 / 4^{\prime \prime}$	15	120
K208026	$25 \times 1 / 2^{\prime \prime}$	10	80
K208027	25×1 "	8	64
K208033	$32 \times 3 / 4$ "	8	64
K208032	32×1 "	8	64
K208042	40×11/2"	1	-
K208041	40×11/4"	1	-
K208040	40×1 "	1	-
K208051	50x11/2"	1	-
K208050	50×1 "	1	-
K208063	63×2 "	1	-
K208075	75×21/2"	1	-
K208075*	$75 \times 21 / 2^{\prime \prime}$	1	-
K208090*	90×3 "	1	-
K2080110*	110×4 "	1	-

MALE THREADED ELBOW

CHARACTERISTICS
 CHARACTERISTICS

ADITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX
K209016	$(\mathrm{mm} \times \mathrm{in})$		(n)
K209018	$16 \times 1 / 2^{\prime \prime}$	25	200
K209020	$18 \times 1 / 2^{\prime \prime}$	20	160
K209025	$20 \times 1 / 2^{\prime \prime}$	20	160
K209026	$25 \times 3 / 4^{\prime \prime}$	12	96
K209032	$25 \times 1 / 2^{\prime \prime}$	12	96
K209075*	$32 \times 1^{\prime \prime}$	8	64
K209090*	$75 \times 21 / 2^{\prime \prime}$	1	-

[^4]
WALL PLATE FEMALE THREADED ELBOW

CHARACTERISTICS

1 ADITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX
K212016	$(\mathrm{mm} \times \mathrm{in})$		
K212018	$16 \times 1 / 2^{\prime \prime}$	14	112
K212020	$18 \times 1 / 2^{\prime \prime}$	12	96
K212025	$20 \times 1 / 2^{\prime \prime}$	12	96

TEE

CHARACTERISTICS

¿ ADITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX	
K230016	(mm)		(un)	160
K230018	$16 \times 16 \times 16$	20	112	
K230020	$18 \times 18 \times 18$	14	112	
K230025	$20 \times 20 \times 20$	14	64	
K230032	$25 \times 25 \times 25$	8	32	
K230040	$32 \times 32 \times 32$	4	-	
K230050	$40 \times 40 \times 40$	1	-	
K230063	$50 \times 50 \times 50$	1	-	
K230075	$63 \times 63 \times 63$	1	-	
K230075*	$75 \times 75 \times 75$	1	-	
K230090*	$75 \times 75 \times 75$	1	-	
K2300110*	$90 \times 90 \times 90$	$110 \times 110 \times 110$	1	-

[^5]
REDUCE TEE

CHARACTERISTICS

1 ADITIONAL INFORMATION PAGE 28

REFERENCE	DIAMETER	BOX		REFERENCE	DIAMETER	BOX	
		SMALL	LARGE			SMALL	LARGE
	(mm)	(un)			(mm)	(un)	
K231014	$18 \times 16 \times 16$	20	160	K231021	$20 \times 20 \times 16$	18	144
K231016	$16 \times 25 \times 16$	10	80	K231022	$20 \times 25 \times 20$	7	56
K231015	$18 \times 16 \times 18$	18	144	K231027	$25 \times 20 \times 20$	10	80
K231017	20x16x16	20	160	K231025	$25 \times 16 \times 25$	10	80
K231020	$20 \times 16 \times 20$	18	144	K231026	$25 \times 20 \times 25$	8	64
K231019	$20 \times 18 \times 20$	14	112	K231031	$25 \times 32 \times 25$	7	56
K231029	$25 \times 16 \times 20$	10	80	K231030	$32 \times 16 \times 32$	8	64
K231034	$25 \times 18 \times 25$	8	64	K231037	$32 \times 18 \times 32$	5	40
K231023	25x20x16	10	80	K231032	$32 \times 20 \times 32$	5	40
K231038	$25 \times 25 \times 18$	7	56	K231033	$32 \times 25 \times 32$	5	40
K231035	$32 \times 25 \times 25$	5	40	K231042	$40 \times 25 \times 40$	1	-
K231028	$25 \times 25 \times 20$	7	56	K231043	$40 \times 32 \times 40$	1	-
K231018	$16 \times 20 \times 16$	18	144	K231053	$50 \times 32 \times 50$	1	-
K231024	$25 \times 16 \times 16$	10	80	K231055	$50 \times 40 \times 50$	1	-
K231039	$25 \times 16 \times 18$	10	80	K231064	$63 \times 40 \times 63$	1	-
more references >				K231065	$63 \times 50 \times 63$	1	-
				K231076	$75 \times 63 \times 75$	1	-

FEMALE THREADED TEE

CHARACTERISTICS

1 ADITIONAL INFORMATION PAGE 28

REFERENCE	DIMENSIONS	SMALL BOX	LARGE BOX
	(mm x in x mm)	(un)	
K232016	$16 \times 1 / 2^{\prime \prime} \times 16$	16	128
K232018	$18 \times 1 / 2^{\prime \prime} \times 18$	15	120
K232020	20×1/2"20	15	120
K232025	$25 \times 3 / 4^{\prime \prime} \times 25$	5	40
K232026	25x1/2"x25	10	80
K232032	32×1 " $\times 32$	4	32
K232041	$40 \times 11 / 4 " \times 40$	1	-
K232040	40×1 " $\times 40$	1	-
K232051	$50 \times 11 / 2^{\prime \prime} \times 50$	1	-
K232050	50×1 " $\times 50$	1	-
K232065	63×2 "x63	1	-
K232063	63×1 "x63	1	-
K232064	$63 \times 21 / 2 \times 63^{\prime \prime}$	1	-
K232075	75x21/2"x75	1	-
K232075*	75×21/2"×75	1	-
K232090*	90×3 " $\times 90$	1	-
K2320110*	110×4 " 110	1	-

MALE THREADED TEE

STOP VALVE

DISTRIBUTOR

CHARACTERISTICS

HANDLE MECHANISM

REFERENCE	DIAMETER	BOX	
		SMALL	LARGE
	(mm)	(un)	
K1632-CP	16-32	5	40

CHROMED UPPER PART

		BOX	
REFERENCE	DIAMETER	SMALL	LARGE
	(mm)		(un)
K1632-RO	$16-32$	5	40

PRESS MACHINE

| REFERENCE | UNIT |
| :--- | :---: | :---: |
| PRESS-ELECT POWER PRESS E BASIC | 1 |
| PRESS-ELECT.ACC POWER PRESS ACC BASIC | 1 |
| PRESS-BAT.ACC AKKU PRESS ACC BASIC | 1 |

SHEAR KAPITAL

REFERENCE	DIAMETER	BOX
	(mm)	(un)
KC35	$16-35$	1

SHEAR RIDGID

REFERENCE	DIAMETER	BOX
	(mm)	(un)
TES 32/R	$16-32$	1

PRESS HEAD U

REFERENCE	DIAMETER	REF
MORD-16 MK	(mm)	
MORD-18 MK	16	A
MORD-20 MK	18	A
MORD-25 MK	20	A
MORD-32 MK	25	A
MORD-40 MK	32	A
MORD-50 MK	40	A
MORD-63 MK	50	A
MORD-75 MK	75	A
MORD/RF-16 PEX	16	B
MORD/RF-20 PEX	20	B
MORD/RF-25 PEX	25	B
MORD/RF-32 PEX	32	B

A: PRESS PROFILE "U"
B: PRESS PROFILE "RF"

CALIBRATOR

REFERENCE	DIAMETER	BOX
	(mm)	(un)
CALIBRAES-S32	$16 / 20 / 25 / 32$	1
CALIBRAES-S63	$40 / 50 / 63$	1
CALIBRAES-S75	75	1

TECHNICAL INFORMATION

PROPERTIES OF THE RAW MATERIAL

MULTILAYER PE-RT / AL / PE-RT pipes are part of a new generation of pipes where the advantages of metal and plastic pipes converge, minimising the inconveniences of both. This pipe is made up of five layers distributed as follows:
$1{ }^{\text {st }}$ PE-RT type II layer
2nd Adhesive layer
3 3rd Overlapping aluminium welded by ultrasounds or aluminium butt welded by laser
$4^{\text {th }}$ Adhesive layer
5th PE-RT type II layer

PE-RT type II (temperature-resistant polyethylene) is a polyethylene resin with a unique molecular structure consisting of a main ethylene chain and controlled ramifications that provide excellent long-term hydrostatic strength. Through overlapping aluminium welding, a wider connection is created, which increases the safety index. Ultrasound welding does not require significant thickness of the aluminium to form a blade.

Therefore, the thickness of the aluminium does not make the pipe harder, making post-production handling very easy.

MULTILAYER PE-RT / AL / PE-RT pipes are produced with an optimised aluminium blade thickness, so that stability is maintained when bending. In this way, the assembly of the pipe is easier as it does not require a lot of strength to bend and can be done manually.

The aluminium blade gives the pipe a very important property: the ability to resist to expansion. As the polyethylene and aluminium pipes are fixed, pipe expansion is reduced as the aluminium expansion factor is low. The performance of the HELIKLIMA pipe is similar that of a metal pipe.

Given that the inner and outer layers of the pipe are made of PE-RT, we obtain a temperature-resistant pipe with reduced roughness, ensuring that no sediments build up and, thus, preventing the formation of limescale.

6833 SKZ A571 CLASSE $1-2-4-5 / 6$ bar (de $0^{\circ} \mathrm{C}=95^{\circ} \mathrm{C} 10$ tar a exceczo

WORK CAPACITY	CLASS
Maximum operating temperature during short periods	$110^{\circ} \mathrm{C}$
Minimum operating temperature	$-40^{\circ} \mathrm{C}$
Minimum assembly temperature	$-10^{\circ} \mathrm{C}$
Burst pressure	80 bar
Thermal conductivity	$0,40 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
Pipe roughness	$0,0004 \mathrm{~mm}$
Expansion coefficient	$0,025 \mathrm{~m} / \mathrm{m}^{\circ} \mathrm{C}$

SUPPLY SYSTEMS

APPLICATIONS	MAXIMUM OPERATING PRESSURE (bar)	OPERATING TEMP. (C°)	APPROVED
Drinking water	10	0-701)	\checkmark
Heating water (closed circuit systems)	10	$0-80^{2 / 3)}$	\checkmark
Saltwater	10	0-70	\checkmark
Ultrapure water (except pharmaceutical water)	10	0-40	\checkmark
Rainwater with a pH value of >6.0	10	0-40	\checkmark
Extinguishing water ${ }^{4)}$	10	0-70	\checkmark
Chilled water with antifreeze agent	10	0-70 ${ }^{5}$	\checkmark
Compressed air (oil purity class 0-3) ${ }^{\text {b }}$	10	0-70 ${ }^{\text {6 }}$	\checkmark
Inert gases (eg nitrogen)	10	0-40	\checkmark

1) Malfunction temperature in accordance with BS EN 806-2:

Tmal $=95^{\circ} \mathrm{C}$, total 100 h over the course of the service life;
2) 3) Malfunction temperature in accordance with EN ISO 10508:2006: Tmal $=100^{\circ} \mathrm{C}$, total 100 h over the course of the service life; 4) Only use approved inhibitors;
5) Only use approved antifreeze agents;
6) Oil purity class in accordance with EN ISO 8573-1:2010E.

PIPE CHARACTERISTICS

NOMINAL DIMENSIONS	THICKNESS	INNER DIAMETER	FLOW LIMIT	FLOW LIMIT	WEIGHT	SERIES
(mm)			(1/h)	(1/s)	(kg/m)	
$16 \times 2,0$	2,0	12,0	814	0,226	0,108	3.5
18x2,0	2,0	14,0	1108	0,308	0,12	4.0
20x2,0	2,0	16,0	1447	0,402	0,142	4.5
25x2,5	2,5	20,0	2261	0,628	0,202	4.5
$32 \times 3,0$	3,0	26,0	3821	1,061	0,32	4.8
$40 \times 4,0$	4,0	32,0	5788	1,608	0,52	4.5
$50 \times 4,5$	4,5	41,0	9501	2,639	0,76	5.1
63×6	6,0	57,0	14701	4,084	1,26	4.8
$75 \times 7,5$	7,5	60,0	20347	5,652	1,75	4.5
$90 \times 8,5$	8,5	73,0	30120	8,367	2,556	4.8
110×10	10,0	90,0	45781	12,717	3,625	5

ADVANTAGES OF THE SYSTEM

LOW
ROUGHNESS

CORROSION
RESISTANT

INSIGNIFICANT THERMAL
EXPANSION

100\% ANTI-DIFFUSION OF OXYGEN

GOOD AGEING PERFORMANCE

SUPPLIED
IN BARS AND COILS

EXCELLENT LONG-TERM BURST RESISTANCE

STABLE FORM AFTER MOULDING AND/OR BENDING

SIMPLE AND
FAST INSTALLATION

DOES NOT
TRANSMIT NOISE

PLEASANT
AESTHETICS

EXTREMLY
BENDABLE

HIGH CHEMICAL
RESISTANCE

HIGH RESISTANCE TO WORK STRAIN

PURENESS AND NONTOXIC

PREVENTS THE FORMATION OF LIMESCALE

The performance requirements for multilayer piping systems conforming to EN ISO 21003 are specified for four different application classes as shown in Table 1. For any application, the selection of the applicable class conforming to Table 1 shall be agreed by the parties concerned. Each application class shall be combined with a design pressure, (DP), of 4 bar, 6 bar, 8 bar or 10 bar, as accordingly ($1 \mathrm{bar}=0,1 \mathrm{MPa}$).

Application Class	Design Temperature T_{D} (${ }^{\circ} \mathrm{C}$)	$\underset{\text { (years) }}{\text { Time }^{b} \text { at }}$	$\mathrm{T}_{\text {max }}\left({ }^{\circ} \mathrm{C}\right)$	$\underset{\text { (years) }}{\mathrm{Timec}_{\text {max }}}$	$\left.\mathrm{T}_{\text {mal }}{ }^{(} \mathrm{C}\right)$	Time at $\mathrm{T}_{\text {mal }}(\mathrm{h})$	Typical area of application
$1^{\text {a }}$	60	49	80	1	1	100	Hot water supply ($60^{\circ} \mathrm{C}$)
$2^{\text {a }}$	70	49	80	1	1	100	Hot water supply ($70{ }^{\circ} \mathrm{C}$)
$4^{\text {b }}$	20	2,5	70	125	2,5	100	Underfloor heating and low-temperature radiators
	40	20					
	60	25					
$5^{\text {b }}$	20	14	90	90	1	100	High-temperature radiators
	60	25					
	80	10					

[^6]
MARKING AND CERTIFICATION

The pipes envisaged in this experimental standard should be marked legibly and at a minimum of one meter intervals with the following information:

DESCRIPTION	MARKED SYMBOL
Reference standard	According to the certifier
Name of manufacturer and/or trademark	HELIROMA / HELIKLIMA
Nominal outer diameter and thickness of the nominal wall	e.g. 16x2,0
Pipe structure	PE-RT/AL/PE-RT
Material	PE-RT TYPE II
Application class combined with operating pressure	Areas of application and pressure
Manufacturer's information	Order of pressure and time

PRODUCT	DOCUMENT NO	CERTIFYING ENTITY
HELIKLIMA	$001 / 847$	AENOR
	A571	SKZ

KLIMAPRESS FITTINGS

The body of the fitting is made of a special treated brass, to ensure greater resistance to corrosion and oxidation.

The stainless steel ring is pre-assembled on the body of the fitting and has a hole that allows you to check if the pipe has been completely inserted.

The clamping between the ring and the body of the fitting provides protection against possible wear and tear of the ' O ' rings. After assembly, the connection can support loads of torsion forces without any leak occurring.

To ensure the total safety of the installation, the use of HELIKLIMA fittings and tools is recommended, as any change in the dimensions and/or characteristics of these elements may alter the performance of the connections

THERMAL EXPANSION AND

 DISTANCE BETWEEN FIXING POINTSDue to the temperature in a hot water installation，the pipe is subjected to the expansion／contraction phenomena，depending on the LENGTH of the pipe and temperature differences． Throughout the installation，to compensate the expansion， certain points have to be taken into account．

APPLICATION OF CLAMPS
 The HELIKLIMA pipe can be fixed to structural elements of the building by means of fixture points and sliding points．
 FIXED POINT（F．P．）：a fixed point it is impossible for the pipe to move．
 SLIDING POINT（S．P．）：a sliding point is when the only function of a point is to support or guide the pipe，allowing it to move．

The position of the FP depends on where the pipe expansion absorption devices are located．The distance between the SP depends on the temperature of the fluid．The higher the operating temperature，the greater the expansion．The pipe

Expansion Coefficient：$\alpha=\mathbf{0 , 0 2 5} \mathbf{m m} /\left(\mathbf{m}^{\circ} \mathbf{C}\right)$
Specific constant of the pipe： $\mathbf{C =} \mathbf{3 0}$

EXPANSION IN mm／m	
OF PIPE ACCORDING TO TEMPERATURE RANGE	
TEMPERATURE RANGE $\left({ }^{\circ} \mathrm{C}\right)$	0,25
10	0,5
20	0,75
30	1,0
40	1,25
50	1,5
60	1,75
70	2,0
90	2,25
100	2,5

support clamps are only considered FP＇s when they are changing direction，opposing the expansion or contraction movement of the pipe．When they do not limit the expansion or contraction of the longitudinal direction，we consider it to be an SP．

PIPE FIXTURE DISTANCES		MINIMUM PIPE LENGTH BETWEEN FITTINGS	
NOMINAL DIMENSION	MINIMUM DISTANCE L (m)	NOMINAL．DIMENSION	PIPE LENGTH（mm）
$16 \times 2,0$	1,2	$16 \times 2,0$	minimum 160
$20 \times 2,0$	1,3	$20 \times 2,0$	minimum 160
$25 \times 2,5$	1,5	$25 \times 2,5$	minimum 170
$32 \times 3,0$	1,6	$32 \times 3,0$	minimum 170
$40 \times 4,0$	1,7	$40 \times 4,0$	-
$50 \times 4,5$	2	$50 \times 4,5$	-
$63 \times 6,0$	2,2	$63 \times 6,0$	-
$75 \times 7,5$	2,4	$75 \times 7,5$	-
$90 \times 8,5$	2,4	$90 \times 8,5$	-
110×10	2,4	110×10	-

BENDING

The HELIKLIMA pipe in the 16,20 and 25 sizes can easily be bent manually using the inner spring or corresponding outer spring or using a bending machine.

HAND BENDING

Separate the pipe manually at a distance of approximately 40 cm and bend to the desired radius.

HAND BENDING WITH THE USE OF THE INSIDE SPRING

Calibrate the pipe and place the spring inside until it protrudes a few centimetres. When making the bend, the spring should not mark the outside of the pipe.

HAND BENDING WITH THE USE OF THE EXTERIOR SPRING
Insert the outer spring through the pipe until it reaches the desired point. Once placed at the bending point, bend the pipe manually, considering the minimum curvature radius listed in the table below:

MINIMUM BENDING RADIUS IN mm (ACCORDING TO TOOL)

PIPE DIMENSION	RADIUS OF	RADIUS OF	RADIUS OF
(mm)		THE MANUAL CURVATURE	
16	$5 \times$ Outer Diameter	$4 \times$ Outer Diameter	(mm)
20	$5 \times$ Outer Diameter	$4 \times$ Outer Diameter	60
25	$5 \times$ Outer Diameter	$4 \times$ Outer Diameter	105

For the 32 diameter, the use of joints is recommended for changes in directions or a bending machine should be used.

BENDING WITH THE BENDING MACHINE
Using the bending machine, the HELIKLIMA pipe can be bent with a high degree of accuracy.

HR
 HELIROMA

HANDLING AND APPLICATION

TECHNICAL INFORMATION

HANDLING AND APPLICATION

1) CUT THE PIPE

Use appropriate scissors for plastic or pipe-cutters and cut in a right angle.
2) CALIBRATE THE PIPE

DIAMETERS $16-25 \mathrm{~mm}$
Use a calibrator to calibrate the inside of the pipe so that a circular chamfer at least 2 mm deep is obtained. To ease the work, you may use the calibrator to adapt a power drill (the maximum number of rotations should not exceed 450 rpm to avoid damage inside the pipe as a result of overheating).

DIAMETERS $32-63 \mathrm{~mm}$
Create a circular chamfer at a depth of at least 2.5 mm inside the pipe with the aid of a calibrator. Visually check if there is a uniform circular chamfer at the end of the pipe.
3) ASSEMBLY OF THE KLIMAPRESS FITTINGS

FOR DIAMETERS AT ≤ 75 - PRESS FITTINGS
Lubricate the kernel of the fitting with an appropriate lubricant, inserting the pipe in the fitting until the top (plastic catch). The correct insertion should be visually checked through the hole of the fitting. PPSU fittings do not require lubricant.

Open the jaw head and adjust to the compression ring until reaching the fitting's catch. Close the jaw head and compress with the machine until the audible alarm of the retreat of the piston sounds.

Very important note: To ensure that all crimping has been done correctly, the compression process must be completed. This means that when starting the process, the cycle should be completed, without any interruption until the audible alarm indicates that the piston has been released.

FOR DIAMETERS AT ≥ 75 - MECHANICAL CLAMPING FITTINGS
Check all the elements that make up the fittings.
Place the brass flange, then the brass nickel ring, the catch and the ' O ' ring at the end of the outside of the pipe.
Insert the aluminium core inside the pipe. Join the brass flanges and tighten the metal screws.

All pipes have to be installed in such a way that they can expand. Pipe expansion between two fixed points can be compensated with an expansion bend or by changing its direction (absorption arm).

FIXING THE PIPE

ON THE CEILING

If the HELIKLIMA pipe is fixed to the ceiling with clamps, it is not necessary to use any other type of support structure. The distance between fixing points according to pipe size will vary between 1.20 and 2.40 m.

ON THE GROUND

If the HELIKLIMA pipe is fixed to the ground, a minimum distance of 80 cm between the fixing points should be taken into account. Before and after a curve, the pipe should be fixed at a distance of 30 cm . If the pipe crosses walls or ceilings, make sure it does not pass through areas with square corners that might cut or damage the pipe.

Note:

Built-in installations: in this case, the fittings must be very well
 insulated to prevent contact with concrete or other elements, thus avoiding a possible reaction in the future.

hotwatersolutions

Huliot Pipes \& Fittings Pvt. Ltd.
Plot No. 714/715, GIDC Manjusar, Tal - Savli,
District - Vadodara, Gujarat - 391775
Tel. +91 (265) 2330671/3
Email : info@huliot in

wwwhuliot.in

[^0]: * For these dimensions, the model is completely made of Brass. The application method is mechanical fit.

[^1]: * For these dimensions, the model is completely made of Brass. The application method is mechanical fit.

[^2]: * For these dimensions, the model is completely made of Brass. The application method is mechanical fit.

[^3]: * For these dimensions, the model is completely made of Brass. The application method is mechanical fit.

[^4]: * For these dimensions, the model is completely made of Brass. The application method is mechanical fit.

[^5]: * For these dimensions, the model is completely made of Brass. The application method is mechanical fit.

[^6]: a) A country may select either class 1 or class 2 according to its national regulations
 b) Where more than one design temperature for time and associated temperature appears for any class, they should be aggregated.
 "Plus cumulative" in the table implies a temperature profile of the mentioned temperature over time (e.g. the design temperature profile for 50 years for class 5 is 20 ${ }^{\circ} \mathrm{C}$ for 14 years followed by $60^{\circ} \mathrm{C}$ for 25 years, $80^{\circ} \mathrm{C}$ for 10 years, $90^{\circ} \mathrm{C}$ for 1 year and $100^{\circ} \mathrm{C}$ for 100 h).
 Note: For values of DT, Tmax and Tmal in excess of those in the table, this International Standard does not apply.
 All systems that meet the conditions specified in Table 1 are also be suitable for cold water supply for a period of 50 years at a temperature of $20^{\circ} \mathrm{C}$ and a design pressure of 10 bar .

